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Magnetic resonance imaging (MRI) has been a prevalence technique for breast cancer diagnosis.
Computer-aided detection and segmentation of lesions from MRIs plays a vital role for the MRI-
based disease analysis. There are two main issues of the existing breast lesion segmentation
techniques: requiring manual delineation of Regions of Interests (ROIs) as a step of initialization;
and requiring a large amount of labeled images for model construction or parameter learning,
while in real clinical or experimental settings, it is highly challenging to get su±cient labeled
MRIs. To resolve these issues, this work proposes a semi-supervised method for breast tumor
segmentation based on super voxel strategies. After image segmentation with advanced cluster
techniques, we take a supervised learning step to classify the tumor and nontumor patches in
order to automatically locate the tumor regions in an MRI. To obtain the optimal performance of
tumor extraction, we take extensive experiments to learn parameters for tumor segmentation and
classi¯cation, and design 225 classi¯ers corresponding to di®erent parameter settings. We call the
proposed method as Semi-supervised Tumor Segmentation (SSTS), and apply it to both mass
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and nonmass lesions. Experimental results show better performance of SSTS compared with ¯ve
state-of-the-art methods.

Keywords: Breast lesion; image segmentation; MRI.

1. Introduction

Image segmentation is a process of separating a
digital image into di®erent regions for speci¯c pur-
poses, such as object recognition and classi¯cation.1

It is widely used in the area of medical imaging
analysis to precisely and automatically delineate
Regions of Interests (ROIs). Computer-aided image
segmentation is a key task in intelligent biomedical
image processing applications, like disease diagno-
sis, anatomical structure analysis, and pathology
localization.2

Breast cancer is one of the most common cancers
that causes deaths in women worldwide.3 Magnetic
resonance imaging (MRI) is an advantageous tech-
nique for breast cancer diagnosis. Radiologists as-
sess MRIs layer-by-layer to locate lesions and
diagnose diseases, which is an arduous and time-
consuming task in real clinical applications.4

Therefore, computer-aided detection and segmen-
tation of lesions from MRIs plays a vital role for the
MRI-based disease analysis.

Numbers of researchers investigated the problem
of lesion segmentation in MRIs in past decades.5

Speci¯cally, Fuzzy C means (FCM) clustering is one
of the most prevailing methods of breast tumor
segmentation due to its simplicity.4 Markov random
¯eld (MRF)-based methods have also been explored
for lesion and anatomical structure segmentation.6

In addition, Liney et al.7 and Chen et al.8 adopted
region growing techniques to outline lesions.

The main weaknesses of the existing breast lesion
segmentation include the following aspects: (1) some
methods require manual delineation of ROIs as a
step of initialization (e.g., Ref. 9), which restricts the
automatic segmentation to cases that su±cient ex-
pert knowledge should be known in advance6;
(2) supervised methods require a large amount of
labeled images for model construction or parameter
learning, while in real clinical or experimental set-
tings, it is highly challenging to get su±cient labeled
MRIs due to the limited number of patients and the
time constraint; (3) existing work mainly focuses on
segmenting mass tumors (either benign or malig-
nant) (e.g., Ref. 5), the investigation on segmenting
nonmass lesions however is relatively less due to the

shape diversity of the lesions, which makes the
delineation of the lesions extremely di±cult.

To tackle these issues, we propose a Semi-
supervised Tumor Segmentation (SSTS) technique,
which constraints the number of threshold
parameters that need to be set in advance, and
requires a small amount of labeled images. In ad-
dition, we take a supervised classi¯cation step to
classify the tumor and nontumor patches obtained
from the unsupervised segmentation to automati-
cally locate the tumor regions in an MRI. SSTS
comprises four main steps: at ¯rst, we delineate an
approximate area of tumors in an MRI (namely
approximate area), by segmenting an MRI based on
Otsu's thresholding method10 with respect to pixel
intensity levels and removing the clusters in low
intensity levels, as tumors in MRI images normally
have relatively high intensities. Secondly, over-
segment the approximate area based on the Simple
Linear Iterative Clustering (SLIC) method11 to
form super-pixels, which further reduces the num-
ber of pixels and improves the clustering e±ciency
in the sequel stages. Thirdly, group super-pixels
based on the DBSCAN technique12 in terms of
mean intensities and positions of super-pixels.
Finally, classify tumor patches to locate tumors in
the original image by using an Adaboost-M1 clas-
si¯cation algorithm13 based on 20 texture features9

and mean intensity levels of patches.
To obtain the optimal performance of tumor

extraction, we take extensive experiments for tumor
segmentation and classi¯cation, with 225 classi¯ers
to be designed corresponding to di®erent parameter
settings.

The main contributions of this paper are: (1) we
design a semi-supervised method for extracting
breast tumors in MRIs, which requires smaller la-
beled datasets compared with the full supervised
methods; (2) we apply the proposed method to both
mass and nonmass lesions and present the tumor
extraction performance of both of them and
(3) abundant experimental results show better per-
formance of our work compared with ¯ve state-of-
the-art image segmentation methods, e.g., a multi-
threshold (MT) method10 and an FCM method.14
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This paper is structured as follows: Sec. 2 illus-
trates the related work of tumor segmentation;
Sec. 3 introduces the proposed SSTS framework in
detail; Sec. 4 discusses the experimental settings
and results and Sec. 5 concludes this paper and
indicates our future work.

2. Related Work

Unsupervised learning methods are normally used
for the identi¯cation of tumors.15 In the research
work carried out by Sauwen et al.,16 the perfor-
mance of unsupervised classi¯cation algorithms is
illustrated, for the segmentation of high-grade
gliomas based on multi-parametric MRI modalities
including conventional MRI, di®usion-weighted
imaging, magnetic resonance spectroscopic imaging,
and perfusion-weighted imaging. Pereira et al.17

applied Convolutional Neural Network (CNN) with
small 3� 3 kernels to automatically segment brain
tumors from MRI images. The authors employed
the intensity normalization as a preprocessing for
CNN-based segmentation.

Unsupervised methods like FCM and Particle
Swarm Optimization (PSO) have been applied to
brain tumor segmentation. Sehgal et al.18 proposed
an automatic method to segment brain tumors from
MRIs. The method include ¯ve steps: Image
Acquisition, Preprocessing, Segmentation using
FCM technique, Tumor Extraction and Evaluation.
Al-Faris et al.19 proposed an unsupervised approach
for MRI tumor segmentation by combining Seeded
Region Growing (SRG) and PSO.

In addition, Chen et al.4 proposed an FCM
clustering-based method to segment breast lesions
from the three-dimensional contrast-enhanced
MR images. The drawback of this method is its
requirement of manually drawing ROIs as an ini-
tialization step. The authors of Ref. 6 developed a
multi-channel MRFs framework, in which they use
conditional mutual information to search for con-
ditional independent features. This method requires
a large amount of labeled data as a priori for model
construction, and it does not analyze the segmen-
tation results on nonmass tumors by using the
proposed method. Yin et al.20 proposed a new
methodology based on tensor algebra that uses a
higher order singular value decomposition to per-
form three-dimensional voxel reconstruction from a
series of temporal images obtained using dynamic
contrast-enhanced MRI (DCE-MRI). Principal

component analysis (PCA) is used to robustly ex-
tract the spatial and temporal image features and
simultaneously denoise the datasets. This method,
however, is validated for tumor segmentation with
small size.

3. SSTS Framework Description

Figure 1 shows a °owchart of the SSTS technique. A
preprocessing module is proposed to normalize MRIs
after breast separation from chests using simple
image processing operation. As shown in Fig. 1,
Module1 delineates the approximate area based on
the Otsu thresholding of imaged intensity. As imaged
tumors in MRIs normally show high intensity levels,
the clustered pixels with low intensity are removed.
The approximate area is over-segmented to super-
pixels using SLIC (Module2). Our work has empiri-
cally shown that the thresholding step can improve
the e±ciency of the over-segmentation by removing
low intensity noise. Module3 clusters super-pixels
based on the DBSCAN technique in terms of mean
intensities and positions. As a lesion is normally
presented as a connected area in an MRI, this step
groups super-pixels with similar intensity, and
meanwhile are spatially adjacent (according to 8-
adjacency matrix) to each other.

After DBSCAN clustering (Module4), we get a set
of tumor and nontumor patches, where a (non)tumor
patchmeans the part of a (non) tumor area or the part
that covers a (non) tumor area (see Fig. 1). To achieve
a supervised learning operation, we de¯ne a labeled
patch as follows: if the area of a patch coinciding with
the ground truth tumor area is above a threshold (r),
it is a tumor patch. We use the dice ratio (DR) be-
tween a patch and a ground truth to measure the
coinciding area of tumor and nontumor patches.

Each labeled patch (tumor/nontumor) is de-
scribed by 21 features (20 texture features and mean
intensity). The features of each patch are stored in
the Patch database. An Adaboost classi¯er is
trained for patch classi¯cation based on the labeled
patches and their features in Patch database. The
classi¯ed patches are combined together to form a
tumor area in an MRI.

3.1. Delineate approximate tumor

area based on Otsu thresholding

The ¯rst step of SSTS is to delineate an approxi-
mate area completely covering tumors (namely

An image segmentation framework for tumor extraction
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approximate area) based on Otsu's thresholding
method. The sequel steps will be only based on the
approximate area.

The Otsu's method aims to ¯nding an optimal
threshold value (k) separating pixels of a gray-level
image I into two classes: foreground (Cfg) and
background (Cbg). It is implemented by minimizing
the weighted within-class variance (�in)

2 or maxi-
mizing the between-class variance (�2

bt). This
threshold ¯nding process is based on histograms of
the gray-level image. Assume I has L intensity
levels, N pixels, and the number of pixels N at level
i is represented as niði 2 ½1;L�Þ, then the histogram
pi of I is normalized as follows:

pi ¼ ni=N ; pi � 0;
XL
i¼1

pi ¼ 1: ð1Þ

Suppose Cbg of image I contain pixels at levels
[1; . . . ; k], Cfg contain pixels at levels [kþ 1; . . . ;L],
!ðkÞ and �ðkÞ be the zeroth- and the ¯rst-order
cumulative moments of the histogram up to the kth
level, respectively, then the occurrence probabilities
(!fg and !bg) and mean intensities (�fg and �bg) are

!bg ¼ PrðCbgÞ ¼
Xk
i¼0

pi; ð2Þ

!fg ¼ PrðCfgÞ ¼
XL
i¼kþ1

pi; ð3Þ

�bg ¼
XL
i¼kþ1

iPrðijCbgÞ ¼
XL
i¼kþ1

ipi=!bg ¼ �ðkÞ=!ðkÞ;

ð4Þ

�fg ¼
Xk
i¼1

iPrðijCfgÞ ¼
Xk
i¼1

ipi=!fg ¼
�ðLÞ � �ðkÞ
1� !ðkÞ :

ð5Þ

The objective is to ¯nd a k� that maximizes �2
bt:

maxð�2
btÞ ¼

½�ðLÞ!ðk�Þ � �ðk�Þ�2
!ðk�Þ½1� !ðk�Þ� : ð6Þ

Pixels of image I are then separated into Cfg and
Cbg based on k�. Figure 2 shows examples of the
segmentation results of Otsu's method on both mass
and nonmass MRIs.

The sequel tasks of SSTS will only work on the
foreground image (i.e., Cfg), as tumors in an MRI
are normally with high intensity levels. The back-
ground part is removed to improve the e±ciency of
tumor extraction.

Fig. 1. Flowchart of SSTS framework.
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3.2. Segment MRIs into super-pixels
based on SLIC

We use SLIC algorithm to cluster image pixels into
super-pixels. SLIC contains four steps: initializa-
tion, assignment, update and post-processing. Sup-
pose image I has N pixels, and k is the number of
super-pixels that I is going to be segmented. The
initialization step initializes centers of super-pixel
clusters Ci ¼ ðli; siÞ, where li is the intensity level of
center of the ith cluster, and si is the location
(xi; yi) of the center pixel. The grid interval of
super-pixel clustering is set as g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðN=kÞp

to pro-
duce equally-sized search regions to speed up
forming similar-sized super-pixels. The centers are
initialized as the positions with lowest gradients in a
3� 3 neighborhood to reduce the chance that a
center is located on an edge or a noisy pixel.

The assignment step assigns each pixel to a re-
gion-overlapped cluster. The search region of clus-
tering a pixel is limited to an area, which speeds up
the formation of super-pixels, as limited search
regions reduce the times of distance calculation
between pixels and clustering centers. SLIC
employs a new distance calculation method

(Eq. (7)) to achieve pixel clustering based on both
pixel intensity levels and locations:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
i þ

ds
S

� �
2

m2

s
; ð7Þ

where di and ds are the intensity and location dis-
tances between two pixels, respectively; and m is a
constant that normalizes intensity distances, which
is in the range of [1, 40].

The update step changes each cluster center (Ci)
to the mean intensity and location vectors h�ðliÞ;
�ðsiÞi of all pixels in each cluster. The ¯nal super-
pixels are determined when the residual error be-
tween the previous cluster center locations and the
updated cluster center locations converges. Based
on the empirical validating, the residual error can
converge after 10 iterations. At last, the post-pro-
cessing step assigns the remaining disjoint pixels to
nearby super-pixels in terms of locations.

Examples of super-pixel segmentation are shown
in the left part of each sub-¯gures in Fig. 3 for
oversegmenting six MRIs containing mass tumors,
and in Fig. 4 for nonmass tumors.

(a) case 1 (b) case 6

(c) case 7 (d) case 16

(e) case 18 (f) case 20

Fig. 2. Foreground of MRIs containing both mass (cases 1, 6 and 7) and nonmass (cases 16, 18 and 20) tumors, segmented based on
Otsu's method.

An image segmentation framework for tumor extraction
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3.3. Cluster super-pixels into patches
based on DBSCAN technique

After over-segmentation of MRIs in Module 2,
Module 3 clusters super-pixels to form tumor and
nontumor patches based on DBSCAN technique,
which is processed as follows:

Given O as a dataset of N items, oi 2 O, then
den(oi) represents the number of neighbors in the
neighborhood of the ith items. The neighbor of oi is
de¯ned as an element oj that distðoi; ojÞ < " and
NB"ðoiÞ is the set of all neighbors of i.

There are three types of objects distinguished by
the number of neighbors of an object: core, border,
and noise. Assume minNB is the minimum number
of neighbors in the neighborhood of object oi, i.e.,
denðoiÞ � minNB, then oi is called a core object,
denoted by o core

i . If the number of neighbors of an
object oj is less than minNB, i.e., denðojÞ < minNB,

and oj 2 NBo core
i
, then oj is called border object,

denoted by oborder
j . A noise object, onoise, has less

than minNB neighbors in the range of distance ",
and all the neighbors are not core objects, i.e., den
ðonoise < minNBÞ and 8oj 2 NB"ðoiÞ, oj is not o core

j .
If an object oi is density reachable with object

oj; i � 1; j � 2, then there is a directed path oi; . . . ;
or; . . . ; oj, and 8or;denðorÞ � minNB;orþ1 2NB"ðorÞ.
An object in a cluster is density-reachable from ar-
bitrary core objects in the cluster.

The DBSCAN clustering process has two steps:
arbitrarily identify a core object o1, and then re-
cursively recognize the density-reachable objects of
o1 to form a cluster. In the DBSCAN clustering of
super-pixels, we use 8-connected adjacency matrix21

to record the adjacent relation among super-pixels.
If two super-pixels are adjacent with each other,
their distance is the mean pixel intensity distance; if
they are not adjacent, their distance is in¯nite.22

(a) case 3 (b) case 6

(c) case 7 (d) case 8

(e) case 9 (f) case 14

Fig. 3. SLIC (left) and DBSCAN (right) segmentation of six mass tumors based on m ¼ 15 and dist ¼ 8.
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The results of DBSCAN clustering of mass
tumors of MRIs are shown in the right part of
Figs. 3(a)–3(f). And the tumor segmentation of six
nonmass tumors of MRIs are shown in the right
part of Figs. 4(a)–4(f). DBSCAN classi¯es super-
pixels that are close to each other in terms of both
intensities and spatial distances. The over-seg-
mented patches by DBSCAN will be classi¯ed by
Adaboost-M1 algorithm in the next stage to locate
the patches containing tumors.

3.4. Classify image patches to extract

tumors based on Adaboost-M1

After segmenting an MRI into a set of patches, we
take a classi¯cation step to predict the patches be-
longing to the tumor part in the MRI. Boosting
algorithms23 are used to improve the performance
of weak classi¯ers. The performance of a weak

classi¯er is normally only better than random clas-
si¯cation. We denote a weak classi¯er as a map f:
X ! Y , where x 2 X is a feature vector of an
object that needs to be classi¯ed, y 2 Y is a label
indicating the class of x, and jY j � 2. At iteration t,
the boosting algorithm gives the weak learner a
distribution (Dt) on a training set R ¼
fðx1; y1Þ; . . . ; ðxn; ynÞg, and the weak learner then
trains a classi¯er ht: X ! Y that minimizes the
training error " ¼ P

iDtðxiÞ�ðhtðxiÞ 6¼ yiÞ, where if
htðxiÞ 6¼ yi; � ¼ 1; or else, � ¼ 0. This error mini-
mization procedure is conducted in T iterations so
that classi¯ers h1; . . . ;hT are trained, and then the
boosting algorithm calculates the ¯nal classi¯er hf

based on the T classi¯ers.
Adaboost assists the weak learner becoming

stronger by focusing on the objects that are hard to
be classi¯ed. That is, in each iteration of weight
updates (Dt ! Dtþ1), the boosting algorithm

(a) case 16 (b) case 17

(c) case 18 (d) case 19

(e) case 20 (f) case 21

Fig. 4. SLIC (left) and DBSCAN (right) segmentation of six nonmass tumors based on m ¼ 15 and dist ¼ 8.

An image segmentation framework for tumor extraction
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assigns higher weights to the misclassi¯ed objects in
round t by multiplying a number in [0,1) with the
weights of objects that are correctly classi¯ed. D is
updated as follows:

Dtþ1ðxi; yÞ ¼
Dtðxi; yÞ

Zt

� � 1
2ð1þhtðxi;yiÞ�htðxi;yÞÞ
t ; ð8Þ

where �t ¼ "t
1�"t

, and Zt is a normalization constant.

The ¯nal classi¯er is calculated as follows:

hfðxiÞ ¼ argmax
XT
t¼1

ln
1

�t

� �
htðxi; yiÞ; ð9Þ

where the multiplication of ln 1
�t

makes the higher

weights be assigned to weak classi¯ers having better
performance.

We use 20 texture features and mean intensity
level of a patch to classify tumor and nontumor
patches based on Adaboost-M1 algorithm. There
are several ways for describing image textures,24 like
the two-dimensional Fourier transformation and
the gray-level co-occurrence metrics (GLCM). The
Fourier transform mainly reveals the periodicity
and directionality of an image,31 while GLCM25 is a
more powerful and popular texture description

method that supports describing a more compre-
hensive contextual image features. In this work, we
de¯ne the texture features based on the GLCM of
an image, which include the following: autocorre-
lation, contrast, correlation, cluster prominence,
cluster shade, dissimilarity, energy, entropy, ho-
mogeneity, maximum probability, sum of squares:
variance, sum average, sum variance, sum entropy,
di®erence variance, di®erence entropy, information
measure of correlation1, information measure of
correlation2, inverse di®erence normalized, and in-
verse di®erence moment normalized.

3.5. Parameter learning for SSTS

There are three parameters that need to be set by
users in SSTS, which are normalization threshold m
for SLIC over-segmentation, distance threshold d
for clustering super-pixels to form patches based on
DBSCAN, and r for patch labeling (see Fig. 5).
Values of m and d determine the clustering perfor-
mance of SLIC and DBSCAN, and hence in°uence
the extent of the segmented tumor patches ¯tting to
the ground truth. Therefore, it is vital to carefully
set values of m and d. We adopt an exhaustive

Fig. 5. Determination of optimal parameters for segmenting and classifying tumor patches.
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method based on extensive experiments to observe
the performance in terms of pre-de¯ned values of m
and d. As the performance of tumor extraction is
also based on the patch classi¯cation results (i.e.,
whether patches are grouped to the right catego-
ries), training an e±cient classi¯er plays a key role.
Correctly labeling the segmented patches (tumor or
nontumor) is the base of the classi¯er training.
Threshold r is de¯ned for patch labeling.

The parameter training procedure is shown in
Fig. 5. We separate the overall MRIs to three sets:
training, testing and validating. Given an MRI i, if
the DR between one patch p of i and the ground
truth of iðRðiÞÞ is not less than r, then p is labeled as
tumor (see lines 7–8 in Fig. 5). Given di®erent
values of m and d, the patches of segmenting i are
di®erent. And given di®erent r, the labeling results
of patches are di®erent. Therefore, for each patch in
a segmentation, we save this patch and its corre-
sponding parameters (m; d and r) in Q (line 9).
Each setting hm; d; ri corresponds to a set of labeled
patches obtained from segmenting di®erent MRIs.
For each setting, we train a classi¯er based on its
labeled patches (line 11). We validate the perfor-
mance of the classi¯er based on the labeled patches
of testI (line 12). At last, we use the validation set
VI to validate the trained parameters pa and its
corresponding classi¯er (line 14).

4. Experiments

Our experiments are conducted on Windows 10
(�64), with Intel Core i7-6700HQ CPU, 2.6GHZ
and 16GB RAM. We validate the SSTS method
based on real and precisely labeled image sets,
which are introduced in Sec. 4.1. We apply a 10-fold
cross-validation technique (see Fig. 5): we separate
image sets into 10 folds, and perform 10 iterations of
training, testing and validating. In each iteration,
we randomly pick six folds as training datasets, two
folds as testing datasets, and two folds as validation
datasets. We collected and labeled datasets in US,
performed the experiments in both China and
Australia, and ¯nished the experiments in October,
2017.

4.1. Dataset description

We validate the proposed semi-supervised image
segmentation method by using MRI image sets of 21

cases. Each case has a set of three-dimensional MRI
images that are all in uint8 format. The gray-level
range of MRIs is 0–255. The size of each MRI is
512� 512� 162 pixels. MRIs of 14 cases contain
mass malignant lesions, and 7 have nonmass
tumors, and 14 cases have in¯ltrating ductal carci-
noma (IDC) tumor, 2 have the ductal carcinoma
in situ (DCIS)of the breast, and 5 have both IDC
and DCIS tumors.

Our experiment is mainly based on MRIs con-
taining tumors whose shortest radius are over 17
pixels. Figure 7 shows two examples of tumors with
short radius less than 17 pixels (i.e., very small
tumors). The performance of SSTS on very small
tumors is not as that e±cient. The main reason is
that the features of mean intensity values and tex-
tures of very small tumors cannot be described ef-
¯ciently, so it is di±cult to distinguish the very
small tumor area with the other parts in an MRI.
How to e±ciently extract very small tumors of
MRIs will be our future work.

4.2. Classi¯cation validation of SSTS

After the DBSCAN step of separating an MRI
image into a set of patches, one tumor will be sep-
arated into di®erent patches. SSTS then performs
the classi¯cation step to identify patches of tumors,
and combines the detected tumor patches to obtain
a whole tumor. We ¯rst show the classi¯cation
validation in this section.

From Fig. 1, the submodule label of Module 4 is
to label the segmented patches of MRI, i.e., to de-
termine whether a patch is tumor or nontumor.
This labeling result is based on the segmentation
results of Modules 1–3.

For each MRI layer containing tumors, we set a
series of parameter values to train corresponding
tumor extraction models (inputs in Fig. 5), which
are Ms ¼ h5; 10; 15; 20; 25i, Ds ¼ h3; 5; 8; 10; 15i,
and Dr ¼ h0:1; 0:2; . . . ; 0:9i. For each setting of
parameters, we train one classi¯er based on the
segmented patches. Each parameter setting corre-
sponds to around 500 tumor patches and 4000
nontumor patches. To resolve the problem of data
unbalancing, we use SMOTE method26 to generate
synthetic tumor samples, and use under-sampling
method to reduce the nontumor patches. Overall,
we have 225 classi¯ers with respect to di®erent
parameter combinations. The trained classi¯ers can

An image segmentation framework for tumor extraction
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also be used for detecting which breast (right or left)
contains tumors in an MRI.

Based on the empirical validation results with
respect to the prede¯ned values of Ms, Ds and Dr,
we ¯x hm; d; ri ¼ h15; 8; 0:6i (Modules 2–4) for
segmenting trainI, testI and VI, and labeling seg-
mented patches as tumors or nontumors. Figure 6
shows the classi¯cation performance based on the
textures and mean intensity levels of image patches
with respect to hm; d; ri ¼ h15; 8; 0:6i. We present
the performance of Adaboost-M1 algorithm in
terms of di®erent decision tree numbers (20, 76, 208,
250, 300, and 500) (see Fig. 6(a)), where the optimal
number of trees is 300. We then ¯x the tree number
as 300, and compare the performance of Adaboost-
m1 (Ada1) with another three classi¯cation algo-
rithms: random subspace (SP) ensemble algorithm,13

Support Vector Machine (SVM),27 and Naive Bayes
(NB)28 (see Fig. 6(b)).We can see that Adaboost-M1
with 300 decision trees has optimal performance
compared with the other three algorithms.

4.3. Qualitative validation of tumor

extraction of SSTS

For both mass and nonmass tumors, we qualita-
tively compare and show the segmentation results

of SSTS with the performance of an MT method,10

and an FCM method.14 MT uses Otsu's multi-level
thresholding method to segment images. We then
pick up and combine the unconnected tumor pat-
ches in a segmented image, and then validate the
performance of MT and FCM based on the extrac-
ted tumor patches.

The parameters of FCM and MT that need to be
prede¯ned is the cluster number (cn) and the level
number (ln) of clustering pixels of an MRI. We use
similar parameter setting method of SSTS to set cn
and ln: after segmenting an MRI into small patches,
we label each patch based on a ¯xed DR value
(between a patch and the ROI), and learn Adaboot-
M1 classi¯er (with 300 simple trees) based on the
labeled patches. The parameters resulting in the
optimal DR (between an extracted tumor area and
the ROI) are ¯xed to validate the performance of
FCM and MT based on VI. The optimal parameters
are hcn; dri ¼ h3; 0:4i and hln; dri ¼ h5; 0:5i (see
Table 2).

After ¯xing parameters of SSTS, MT, and FCM,
we compare the tumor extraction performance of
SSTS, MT and FCM on mass and non-mass tumors.
Figure 8 shows the extraction results of mass tumors.
We can see that the extraction results of SSTS on
MRIs of case 1 are similar as the result of MT, which
is much better than the result of FCM. The results of
SSTS on MRIs of cases 3–6 are similar as the results
of FCM, which are better than the results of MT.
The segmentation results of SSTS on MRIs of
cases 6–9 are signi¯cantly better than the results
of MT and FCM. Figure 9 shows seven examples of
extracting results of non-mass tumors. We can
see that SSTS performs much better on extracting

16 pixels
16 pixels

16 pixels

Fig. 7. Two examples of very small tumors.

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

20 76 208 250 300 500

Acc Sen Spe PPV NPV

(a)

0

0.2

0.4

0.6

0.8

1

1.2

Acc Sen Spe PPV NPV

Ada1 SP SVM NB

(b)

Fig. 6. Classi¯cation performance validation. (a) Performance comparison in terms of di®erent tree numbers and (b) performance
comparison of four classi¯ers.
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non-mass tumors compared with the MT and FCM
methods.

4.4. Quantitative validation of tumor

extraction of SSTS

We use a set of metrics to quantitatively validate
the performance of di®erent segmentation meth-
ods. De¯nitions of metrics are de¯ned in Table 1,

including DR, Precision (PR) and Recall (RC).
S represents the segmented area and G denotes
the ground truth.

We quantitatively compare the tumor extraction
performance of SSTS, FCM, MT, Statistical mo-
ment (SM)-based k-means clustering,29 and Mor-
phology (MOR)-based k-means clustering.30 The
parameter settings of SSTS, FCM, and MT were
discussed in Sec. 4.3.

FCMGroundTruth SSTS MTTumor

5

4

3

2

1

6

8

7

9

Fig. 8. Comparison of segmentation results of SSTS, MT, and FCM on mass tumors of nine cases.
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Table 2. Optimal parameter settings and segmenta-
tion results of ¯ve segmentation algorithms.

Method DR PR RC Para

SSTS 0.74 0.83 0.69 hs; d; ri ¼ h15; 8; 0:6i
FCM 0.67 0.87 0.57 hcn; ri ¼ h3; 0:4i
MT 0.67 0.85 0.6 hln; ri ¼ h5; 0:5i
SM 0.19 0.1 0.7 hws; sti ¼ h41; 1i
MOR 0.08 0.02 0.91 hse; ksi ¼ h0:02; ½5; 20�i

Table 1. De¯nitions of validation
metrics.

Metrics Formulas

DR 2ðS\GÞ
S\GþS[G � 100

PR S \G=S
RC S \G=G

10

11

Tumor Ground Truth SSTS MT FCM

12

13

14

15

16

Fig. 9. Comparison of segmentation results of SSTS, MT, and FCM on nonmass tumors of seven cases.
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For SM method, we use sliding windows to sep-
arate each image into small patches and process
each patch step-by-step. We ¯x the sliding window
size as 41, and the step size of sliding window as 1.
Each image patch is calculated to obtain a feature
vector that contains ¯ve ¯rst statistical moments,
and all the sub-images are clustered in terms of their
feature vectors. The MOR method applied mor-
phological ¯ltering and reconstruction schema to
segment circular regions in an image. We ¯x the
segmentation sensitivity as 0.02, and the kernel size
ranged from 5 to 20 (see Table 2).

From Table 2, the DR of SSTS is better than the
DR of the others, while the precision of SSTS is
worse than the precision of FCM and MT. Based on
the de¯nition of DR, PR, and RC (Table 1), the
delineated area of SSTS tends to be larger than the
true ground tumor area (ROI), while the FCM and
MT tend to delineate an ROI's sub-area that cannot
cover the whole tumor. The SM and MOR perform
dramatically worst compared with the other three
methods (based on DR), even though their recalls
are better than the others, which indicates that the
SM and MOR extract regions are much larger than
the true ROI area.

Our experiment is mainly based on MRIs con-
taining tumors whose shortest radius are over
17 pixels. Figure 10 shows two examples of tumors
with short radius less than 17 pixels (namely very
small tumors). The performance of SSTS based on
very small tumors is not as e±cient as its perfor-
mance on normal tumors. The main reason is that
the features textures of very small tumors cannot be

described as well as the features of normal tumors,
so it is di±cult to distinguish the very small tumors
area with the other parts in an MRI. How to e±-
ciently extract very small tumors of MRIs will be
our future work.

5. Conclusion and Future Work

This work developed an SSTS method to delineate
lesions in breast MRIs. The proposed method
requires limited number of parameters to be set in
advance, and is capable of delineating both mass and
nonmass tumors. In SSTS, we applied Otsu thresh-
olding method to remove low intensity pixels, and
used SLIC super-pixel method to over-segment
MRIs, both of which aim to improve the e±ciency of
tumor segmentation. We validate SSTS on a large
amount of labeled MR images, and the experimental
results show higher DR of SSTS on extracting both
mass and nonmass tumors in breast MRIs compared
with classical image segmentation methods (e.g., MT
and FCM). SSTS can also be extended to distinguish
health and cancerous breasts based on MRIs. How-
ever, the current parameter setting process is an ex-
haustive procedure, and only discrete parameter
values are tested. Our future work will be on devel-
oping a more e±cient parameter setting procedure;
and extend our work to extracting more types of
breast tumors and very small tumors.

Con°ict of Interest

The authors declare that there are no con°icts of
interest related to this paper.

(a) Ground Truth (b) SSTS

(c) MT (d) FCM

(a) Segmentation results of case 10

(a) Ground Truth (b) SSTS

(c) MT (d) FCM

(b) Segmentation results of case 6

Fig. 10. Zoom in the segmented tumors of ground truth, SSTS, MT, and FCM.
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